

CS/IT Honours

Final Paper 2019

Title: Generating 3D Interlocking Puzzle Pieces from 3D Arrays

Author: Nkosingiphile Gumede

Project Abbreviation:

PUZLOK

Supervisor(s): Prof.

James Gain

Category Min Max Chosen

Requirement Analysis and Design 0 20 20

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 0

System Development and Implementation 0 20 20

Results, Findings and Conclusion 10 20 10

Aim Formulation and Background Work 10 15 10

Quality of Paper Writing and Presentation 10 10

Quality of Deliverables 10 10

Overall General Project Evaluation (this section

allowed only with motivation letter from supervisor)

0 10 0

Total marks 80

DEPARTMENT OF COMPUTER SCIENCE

Generating 3D Interlocking Puzzle Pieces from 3D Arrays
 Nkosi Gumede

University of Cape Town

Department of Computer Science 2019

ABSTRACT

This paper focuses on a technique for generating 3D (3-dimensional)
interlocking puzzles. The technique is adapted from a research paper
published in 2012 entitled ‘Recursively Interlocking Puzzles’ [10]
which contains a 3D puzzle piece generating algorithm written by

Peng Song, Chi-Wing Fu and Daniel Cohen-Or. Together they solved
the mystery of the governing mechanics behind recursively
interlocking puzzles. Their algorithm follows a top-down constructive
approach which offers a much-needed speedup over pre-existing
exhaustive search approaches. Such 3D puzzles have a large number
of (potential) applications. For example, they can be used to create
games and furniture which can be assembled and/or disassembled.
This paper focuses specifically on the application of 3D interlocking

puzzles to the fast-growing field of 3D printing.

Using ‘Recursively Interlocking Puzzles’ [10] and an existing
framework; this paper unpacks the process of generating 3D
recursively interlocking puzzles from 3D models. Our focus is
primarily centred on coding the algorithm contained in section 5 of
‘Recursively Interlocking Puzzles’. We discuss the process of
implementing the algorithm and aim to offer suggestions to assist in

speeding up the execution time of the algorithm as a whole. The
method for evaluation is comparing their algorithm to our
implementation in terms of both speed and accuracy. The necessity to
measure speed comes from our desire to speed up the source
algorithm. The necessity to measure accuracy comes from our desire
to ensure that valid puzzle pieces are generated consistently.

Keywords

Recursive interlocking; 3D puzzles; algorithms; computational
geometry

1. INTRODUCTION

3D interlocking puzzles are puzzles with the following two attributes:
1) Interlockable (assembly and disassembly are required to solve the

puzzle). 2) 3-Dimensional (the third dimension should constrain all
generated puzzle pieces). The term ‘voxel’ is important to understand
as it will be used throughout this paper. A voxel can is a volume
element – a cube with all six sides being of equal length and breadth.
Finding a valid interlocking puzzle given an enclosing volume for a
target shape is a computational geometry problem that has already been
solved by Song et al [10]. However, their solution requires a blocky
outer surface aligned on a regular grid that could take up to 10 hours

to generate given large input sizes. Since 2012, computing power has
generally increased according to Moore’s Law. This means that
generating 3D interlocking puzzle pieces is a lot more feasible. This
paper explores the Song et al [10] algorithm in detail; going from a
relatively high-level of pseudocode to a lower-level which is easier to
understand. 3D interlocking puzzles are relevant because they have
many applications. Not only are they fun and interesting, but they can
also be used to generate useful objects such as tables and chairs. We
are only in the early stages of discovering their usefulness. Objects

consisting of various components do not have a single point of failure.
If the engine of a vehicle failed, for example, you would only have to
replace the engine. Given a lower-level description of the code, we will
discuss the parts of the algorithm which are computationally expensive

and suggest ways to execute such programs faster using multiple cores
and other high-performance computing techniques.

2. PREVIOUS WORK

There are three main general approaches to solving the problem of
generating interlocking puzzles. Namely, the exhaustive search
approach, the construction approach and the geometric design
approach.

2.1 Exhaustive Search

The exhaustive search approach describes the naive method of

generating puzzle pieces. The set of valid puzzle pieces are generated
iteratively by going through the set of all possibilities. This approach
was commonplace in the early days of puzzle generation. Due to its
inefficiency, exhaustive searching has since been replaced by more
efficient approaches in recent times. Little is known about the origins
of interlocking puzzles. Many believe that they were invented by the
Chinese, who used wood to build earthquake-resistant homes without
nails. Edwin Wyatt, author of Puzzles in Wood [13], coined the term
‘burr’ to describe puzzles which resemble a burr seed. In 1997, IBM

Research [3] launched the burr puzzles site. IBM Research defines
burr puzzles as “consisting of at least three rods intersecting at right
angles”. Burr puzzle algorithms attempt to discover new interlocking
puzzles based on exhaustive search. There are various types of three-
piece and six-piece burr puzzles. The burr puzzles site extensively
covers Bill Cutler’s contributions to burr puzzles. Cutler [2] also
covers previous attempts to discover new interlocking puzzles based
on exhaustive search. Bill Cutler introduced a large number of six-

piece interlocking structures. He shows that there are 314 ways to
assemble 25 notchable pieces to make a six-piece burr puzzle by
assessing all permutations through exhaustively searching for puzzle
pieces which meet the criteria for interlocking. There are two
approaches for constructing all assemblies via a computer program: 1)
the program determines every set of six pieces and possible
assemblies, then checks for a solution. 2) The program constructs each
assembly of six pieces, analyzing it immediately. Approach 2 was

selected as it saves time. Rover [7] created the Burr Tools computer
software to help solve certain puzzle designs by trial-and-error (an
exhaustive search approach). The program supports “square or dice
shaped units, spheres, prisms with an equilateral triangle as base or 2
grids that use tetrahedra”. The program allows users to construct
puzzle pieces and target shapes visually. Users can then use the puzzle

solver to check for the number of assemblies, solutions and the time
taken to complete a generated puzzle.

Figure 1: Coffin [1]’s four-piece interlocking cube.

2.2 Construction Approach

The construction approach refers to a method of generating
interlocking puzzle pieces recursively from a source object. This can
be done by dividing the source object into its constituent puzzle pieces
(top-down approach) or by creating new puzzle pieces from the source
object (bottom-up approach). Song et al. [10] explore a recursive top-
down approach for devising new interlocking geometries that directly
guarantee the validity of the interlocking instead of exhaustive testing

it. The algorithm takes a voxelized shape as input and iteratively
extracts puzzle pieces until the remaining part is the last piece. The
algorithm requires local interlocking among the key piece (the first
piece to be extracted), the secondary piece, and the remaining part.
Wang et al. [12] present a general framework for designing
interlocking structures which use Direction Blocking Graphs and
analysis tools. They use an algorithm outlined in section 4 of their
paper to design an interlocking assembly from a given shape by

generating parts puzzle pieces and a remaining volume. Much like
Song et al. [10], they generate the key piece and then generate the other
pieces from the remaining volume. The main difference between the
two approaches is the design of the graphs used to ensure interlocking
– all previous parts are used as opposed to using only the most recently
added part. Song et al. [11] delve deeper into the matter of generating
interlocking puzzle pieces while focusing on their ability to be 3D
printed. They take a watertight (consisting of no gaps/ holes) surface

mesh as input and place a 3D grid within the object’s space to voxelize
it. They deform the geometry locally to cater to fragments.
Neighbouring voxel shape connection strength is calculated by
analysis local shapes and a graph is built. The important features of the
model are realized on saliency graph. The construction of puzzle
pieces is guided by the graphs, reassigning boundary voxels (for
aesthetics) and constructive solid geometry (CSG) intersection.
Interlocking does not necessarily have to be produced with voxelized
pieces. This is demonstrated by Lau et al. [5] who converted furniture

models into parts and connectors using lexical and structural analysis.
Their algorithm uses lexical analysis to identify primitive shapes
(processed as tokens). Then, structural analysis to generate
fabricatable parts and connectors automatically. The output of their
algorithm can also generate user manuals on how to assemble furniture
from constituent components via the bottom-up approach.

2.3 Geometric Design Approach
Stewart Coffin is widely regarded as the world’s best designer of
interlocking puzzles. In 1990, he produced a book [10], which
described interlocking cubes. His book motivated the study of

geometric mechanics producing interlocking. The geometric design
approach refers to using lines and curves generated by a mathematical
equation to generate puzzle pieces. Lo et al. [6] used the geometric
design approach to generate 3D polyomino puzzles. They created
shell-based (comprising of an interlocking surface) 3D puzzles with
polyominoes as the component shape of the puzzle pieces. First, apply
quad-based surface parametrization to the input solid and tile the
parametrized surface with polyominoes. Then, construct a tiled surface
inside the parameterized shape to fit inside a thick shell volume.

Finally, they use associated geometric techniques to construct puzzle
pieces (polyominoes generated via Procedure 1 outlined in section 2
of their paper). Xin et al. [13] also explored the governing mechanics
of interlocking puzzles using geometric methods. They replicated and
connected pre-defined six-piece burr structures to create larger

interlocking puzzles from 3D models. First, they embed a network of
knots into a given 3D model. Then, the 3D model is split according to
its geometry. The method requires one to first manually design and
construct a grid-based graph inside a given 3D shape. The method can
put a six-piece burr puzzle at each grid point and connect them to

guarantee the interlocking. Their paper describes both a single-knot
and multi-knot burr puzzle. Zhang and Balkcom [14] explore a
solution to assemble voxelized interlocking structures using joints
(pairs of male-female connectors on adjacent voxels) to guarantee
interlocking and assembly order. The algorithm breaks models into
layers and sequentially builds layers using block types to restrict the
mobility of puzzle pieces.

3. SYSTEM FRAMEWORK

The general flow of our system consists of the following seven steps:
1) Obtain a triangle mesh object. This triangle mesh object is a 3D
model of an object such as a sphere or bunny represented in a ‘.stl’
file. Such a file can be obtained for free online. 2) Voxelize the object.

Voxelization describes the process of representing an object as a
collection of voxels. The process of voxelization is accomplished by
my project partner, Dominic Ngoetjana, with the assistance of a 3D
model renderer supplied by our supervisor. The process of

voxelization is accomplished by aligning a 3D object on a 3D grid and
setting voxels where space in the 3D grid is predominantly covered by
the 3D object. 3) Apply the relevant puzzle generating algorithm.
In this case, the relevant puzzle generating algorithm has been
determined to be Song et al. [10]. Section 5 of this paper details how
this algorithm is applied in the context of our system. 4) Generate

multiple voxel pieces. The output of the previous step (3) is a set of
puzzle pieces which must be served back into the renderer for

processing. 5) Triangulate the voxel pieces. Each voxelized puzzle
piece is served back into the renderer and must be triangulated for the
sake of 3D printing. Triangulation is the process of converting the
surface of any 3D object to many tiny connected triangles. This must
be accomplished for the purpose of 3D printing. 6) Add a

triangulated outer surface (optional). A triangulated outer surface is
added on top of the voxelized puzzle piece to give our final 3D object
a smooth (as opposed to blocky) outer surface. 7) 3D-print the puzzle

pieces. Finally, we represent the triangulated 3D object in a ‘.stl’ file
format which is recognized by 3D printers and 3D print all puzzle
pieces. All steps mentioned above are to be integrated into one final
system. Part 3 (applying the relevant puzzle generating algorithm) is
the focus of this paper while the rest of the work is allocated to

Dominic Ngoetjana. Figure 2 below provides an overview of the entire
system.

Figure 2: A visual representation of the entire system. D (Dominic)
represents the responsibilities of my project partner. N (Nkosi)
represents my responsibilities.

4. SOURCE ALGORITHM

Section 5 of Song et al. [10] features an innovative approach for

generating recursively interlocking puzzle pieces. Their work follows
two main procedures: 1) Extracting a key piece from an input
voxelized 3D mesh. 2) Iteratively extracting all of the other puzzle
pieces from the remaining volume.

4.1 Extracting of Key Piece

The first part of the algorithm described by Song et al [10] follows five

main procedures: 1) Pick a seed voxel. 2) Compute voxel accessibility.
3) Ensure blocking and mobility. 4) Expand the key piece. 5) Confirm
the key piece. These five produces are explained in detail below.

4.1.1 Pick a seed voxel

The first step is to identify a set of candidate seed voxels which meet
the following criteria: 1) they must be at the top exterior of the puzzle.
2) They must have exactly two exterior and adjacent faces. From that
set of candidate voxels, we either randomly select a seed or let the user
make a choice.

4.1.2 Compute voxel accessibility

To avoid fragmenting the remaining volume after extracting a key
piece, we compute accessibility values for every voxel. The process of
computing accessibility values is done via three passes. In the first pass,
we set the accessibility value of each voxel to the sum of its neighbours.
That is, for each neighbour a voxel has (left, right, up, down, forward
or backward), its neighbour count is increased by one. Once the first
pass is over and all voxel accessibility values have been calculated, we
will execute two more subsequent passes through all voxels in the

object. In the subsequent passes, the accessibility values of each voxel
are equal to the current accessibility value of the current voxel plus the
sum of the accessibility values of its neighbours. The accessibility
values indicate how each it is to visit a voxel via its neighbours.

4.1.3 Ensure blocking and mobility

At this point, we should be ready to develop the key piece. A key
requirement is that this piece should be removable in one direction; we

will call this the normal direction. The key piece should be blocked in
all other directions. The normal direction will be set to the direction of
the outward-facing exterior which is adjacent to the upward-facing
exterior. After this, we do a breadth-first traversal from the seed to all
other voxels to find 50 pairs of voxels closest to the seed. Each pair will
consist of a blocking and blockee voxel. The blocking voxel is a voxel
which will prevent the puzzle piece from moving out of the puzzle. The
blockee voxel is a voxel in the puzzle piece which is adjacent to the

blocking voxel which allows the piece to be blocked. The blocking and
blockee voxel pairs will be on the positive and negative sides of the
normal direction respectively. Among these 50 pairs, we will collect 10
voxel pairs whose blockee has the smallest accessibility value. Next,
the goal will be to expand the piece in a way that it is blocked from
moving out of the puzzle along the normal direction. We will
accomplish this with the following three steps. 1) Via breadth-first
traversal, determine the shortest paths from the seed voxel to each

blockee voxel without crossing the blocking voxel or any other voxels
which are positioned beneath it. This path will represent the voxels in
the key piece. 2) Make this key piece removable by adding all the
voxels above the path. Ignore the shortest path candidates generated
from step 1 which lead to creating a removable key piece with an
excessive number of voxels. This is done by presetting a variable (m)
to the average number of voxels per puzzle piece. Alternatively, the
variable m can be calculated by determining the number of puzzle

pieces we wish to generate. The number of voxels per puzzle piece is
equal to the total number of voxels in the puzzle divided by the number
of puzzle pieces. The removable key piece should contain less than m
voxels. 3) Now that we have a removable key piece with less than m
voxels and might mobilize the piece by adding voxels in previously
blocked directions; we will identify an anchor voxel for each one of the
directions blocking the seed. The purpose of the anchor voxels is to
ensure we do not expand the piece using a voxel which would make it
removable in any other directions. The anchor voxel for each direction

is set to the voxel furthest away from the seed along that direction,
keeping all other axes constant. Anchor voxels should be added to the
key piece.

4.1.4 Expand the key piece

At this point, we should be in a position to expand the key piece using
information yielded from the afore-mentioned three-step procedure.
From the shortest path candidates, we will sum the accessibility values
of all voxels in each shortest path and set key piece to the shortest path
with the smallest sum of voxel accessibility values. Since it is still

expected to be less than m voxels in size, the following three steps
should be applied iteratively to expand the key piece until it is the
appropriate size (m): 1) Store an additional anchor voxel relative to the
blocking voxel in the same manner as before; it will be the furthest
voxel directly-connected along the direction blocked by blocking
voxel. If such a voxel does not exist, set the additional anchor voxel to
the blocking voxel itself. 2) Store the set of voxels which neighbour the
current key piece but are neither the anchors nor below the anchors. For

each voxel, also store the set of voxels above it on the same axes. If the
voxels added are in excess of the number required by m, remove them.
This stored set of voxels represents the candidate voxels. 3) Finally, we
will add candidate voxels to the key piece on the basis of probability
until the key piece is the appropriate size. First, we take the sum of each
candidate voxel and the voxels above it. Then, we set a Beta value to
any integer between 1 and 6. We use this Beta value to get a normalized
sum of accessibility values (Pi) by calculating negative Beta raised to

the power of the sum of accessibility values. As we calculate each Pi,
we add it to a cumulative total. The probability value from each
candidate voxel is equal to its Pi divided by the sum of all Pis (i.e. the
cumulative total). Now we can randomly pick voxels to add to the key
piece by repeating the three steps outlined above until there are roughly
m voxels.

4.1.5 Confirm the key piece

To ensure the validity of the key piece, we must ensure the remaining
voxel (voxels not in the key piece) are simply connected. This can be
done by applying a flooding algorithm which checks if all voxels are
reachable via neighbouring voxels. If so, given that the key piece
generation process has been followed correctly, we can confirm that the
key piece is valid.

4.2 Extracting the Other Puzzle Pieces

Much like to first part of Song et al. [10], the second part of the algorithm
also follows 5 main procedures: 1) Select candidate seed voxels. 2)
Create an initial next piece. 3) Ensure local interlocking. 4) Expand the
next piece. 5) Confirm the next piece.

4.2.1 Select candidate seed voxels

The next piece should be blocked by the key piece as required by the
property of being recursively interlocking. The candidate seed voxels, in
this case, are voxels which neighbour the key piece in a direction
perpendicular to the direction in which the key piece is removable. The
set of candidate seeds will be reduced to a maximum of ten via the two
equally-weighted criteria: 1) voxels with smallest accessibility values. 2)
The shortest distance between the candidate seed and furthest voxel

along the perpendicular direction.

4.2.2 Create an initial next piece

To determine which seed voxel will be picked, we must determine the
cost of making the proposed next piece removable along the
perpendicular direction by following three steps: 1) Identify all voxels
(in the remaining volume) from the candidate seed to furthest-away
voxel along the perpendicular direction. 2) Connect the candidate seed
to the closest voxel among those identified in step 1. 3) Add all the other
voxels required to make the next piece removable along the

perpendicular direction. Store all the voxels identified by the steps above
and calculate the sum of their accessibility values according to the same
formula used in section 4.1.2. The chosen seed candidate should have the
smallest sum of accessibility values. The seed and all the other voxels
identified above constitute our next piece.

4.2.3 Ensure local interlocking

Since the next piece is already blocked in one direction, we must now
ensure that we block the other five directions. We must also ensure that
the absence of the key piece does not render the next piece removable in

more than one direction. If any voxel from either the key piece or the
new remaining volume neighbour the next piece along the perpendicular
direction, the next piece is considered blocked (or not removable). If the
next piece is removable along an undesired direction (a direction other
than the perpendicular direction), we apply the strategy (of using anchor,
blocking and blockee voxels) described in section 4.1.3.

4.2.4 Expand and Confirm the next piece

The process of expanding the next piece to roughly m voxels and
confirming it is identical to that of the key piece. Both processes are

previously described in sections 4.1.4 and 4.1.5 respectively.

5. IMPLEMENTATION OF THE SOURCE

ALGORITHM

Our implementation of Song et al. [10] was coded from scratch using

Java. We created two driver classes to called Puzlock and Puzlock2 to
represent the implementation of subsections 5.1. and 5.2 respectively.
We use the 3D integer array data structure to represent a voxelized
input object. Credit goes to my Dominic Ngeotjana for adding the
functionality to input and output text files consisting of 1s and 0s (based
on a 3D model) to the renderer. The idea was to use a text file as the
input to the program. This text file would then be used to generate

dynamic 3D arrays of integers. We created an IO (Input-Output) class
to convert input text files to 3D integer arrays and vice-versa. We used
the renderer to visualize the output of my program. The output was a
set of text files written in the same format as the input test files. These
output text files were used to represent either puzzle pieces or the

remaining volume. Visualization via the renderer aided the process of
debugging, allowing me to compare my expectations with the actual
output. The class diagram below provides a visual representation of the
entire Puzlock system.

Figure 3: Class diagram showing all classes in the Puzlock java

program and their associations. The methods written in green
represent methods which passed Junit testing and the methods written
in red represent methods which failed Junit testing.

5.1 Extraction of Key Piece

The Java program we created consists of a method which reads in a file
consisting of 0s and 1s to initialize a 3D array of integers. This 3D array
of integers is used to initialize an ArrayList of voxels. To represent a
voxel, we created a Voxel class which stores the x, y and z coordinates
of the voxel as well as its value. The value 1 represents the presence of
a voxel and 0 represents its absence. We use the main method to
initialize all global variables, including those which are generated from
user input such as the average size of a puzzle piece (m) and Beta.

Please note that the voxel at the most extreme left, top and backward
position is always at position 0, 0, 0 (x-coordinate, y-coordinate and z-
coordinate respectively) when represented on the 3D array. The voxel
at the most extreme right, bottom and forward position is always at
position n, n, n; where the integer n is the size of the 3D array minus
one. We use a 4x4x4 3D array is the default input mesh. The main calls
each method described in the five sections below.

5.1.1 Pick a seed voxel

We begin the process of extracting a key piece by picking a seed voxel.
To do so, we created a method called pickSeedVoxel which iterated
through all voxels in the ArrayList and stores the all voxels which meet
the following criteria: 1) the voxel must be at the top-most position of
the 3D array (which means it should have the lowest possible y-
coordinate). 2) The voxel must not have a neighbour at the either left,
right, forward or backward direction. If the voxel does not have a
neighbour in the direction we are currently checking, we set its normal

direction to the current direction. To check whether there is a
neighbouring voxel in one of the six directions (left, right, up, down,
forward or backward), we use six methods which take in a voxel’s
coordinates as parameters and return either the neighbouring voxel
(with a value set to 1 if present or 0 if absent) or null (if a voxel object
was not created in that direction). These methods are appropriately
named ‘getLeft’, ‘getRight’, ‘getUp’, ‘getDown’, ‘getForward’ and
‘getBackward’. We will hereafter refer to these six methods as

‘get<Direction>’. If a voxel meets both criteria, we check to see if it is
already contained in the candidate set of seed voxels (called
exteriorVoxels). If it is already contained, it is set to be removed from
the candidate set of voxels by adding it to an ArrayList called
duplicates. If it is not already contained, it is added to the candidate set
of seeds. From the candidate set of seed voxels, we randomly pick a
seed by generating a random number limited by the range of indices in
the candidate set of seed voxels.

5.1.2 Compute voxel accessibility

We compute an accessibility value for each voxel in the input mesh
(represented with a 3D array) to reduce the chance of having a
fragmented remaining volume after the key piece has been extracted.
We do so with three (as suggested by Song et al. [10]) passes. In the
first pass, we use a triply nested for loop to go through all positions in
a 3D array. We use a method called ‘countNeighbours’ to count how
many neighbours each voxel has using get<Direction> for one of the
six 3D directions. In the first pass, the accessibility value of each voxel
is set to the number of neighbours it has. A method called

‘subsequentPasses’ is then called to compute the accessibility value of
each voxel in the remaining passes. The subsequent passes method
contains a quadruply nested for loop. The outer for-loop is for the
current pass. The inner triply nested for-loop is used to iterate through
the positions of the 3D array. Within this loop, we iteratively (for each
subsequent pass, denoted by ‘p’) calculate a new accessibility value for
each voxel which is equal to its current accessibility value plus the
product of two variables called ‘power’ and ‘sum’. ‘Power’ is equal to

the weight factor (set to 0.1 in Song et al. [10]) to the power of ‘p’ (the
current subsequent pass number). ‘Sum’ is calculated by a method
called sumOfNeighboursAccValues. It is the sum of the accessibility
values of neighbouring voxels (set during the previous pass). It is
important to note that the accessibility values should always be set
using the accessibility values from the previous pass; we distinguish
between the accessibility values of the current pass and the previous
pass using two ArrayLists of voxels called ‘newvoxels’ and ‘oldvoxels’

respectively.

5.1.3 Ensure blocking and mobility

Now we have to ensure that the key piece is removable in one direction
and blocked in the other five directions. We use a
‘breadthFirstTraversal’ method to store fifty blocking and blockee
voxel pairs. The blocking voxel is used to block the key piece in the
removable (‘normal’) direction. The blockee voxel is the voxel in the
key piece which is blocked by the blocking voxel. These two voxels
are therefore always positioned next to each other such that the

blocking voxel has at one exterior. To conduct the breadth-first
traversal, we keep track of the voxels which have already been visited
in an ArrayList called ‘visitedAdjacentVoxels’; making to traverse
from the neighbours which have not already been visited in each
iteration. The current voxel is initially set to the seed voxel. We use the
normal direction to determine which direction the blockee voxel should
be in relative to the blocking voxel. For example, if the normal direction
is left, then the blockee voxel is always set to the right of the blocking

voxel. A class called VoxelPair is used to represent each blocking/

blockee voxel pair. Once we have stored our fifty voxel pairs, we create
another ArrayList called ‘accVals’ to store the accessibility of each
blockee voxel in each voxel pair. We sort the ‘accVals’ list from the
smallest accessibility to the largest and then set the tenth element of
‘accVals’ to the maximum accessibility value. We then iterate through

the fifty voxel pairs again and store the first ten voxel pairs whose
blockee voxel has an accessibility value less than or equal to the
maximum accessibility value in yet another ArrayList called
‘accessibleVoxelPairs’.

Now that we have our ten least accessible voxel pairs (in
‘accessibleVoxelPairs), we can begin the process of ensuring blocking
and mobility. To do so, we use the ‘ShortestPath’ class to determine the
shortest path from the seed to each blockee voxel contained in
‘accessibleVoxelPairs’ without crossing the blocking voxel. The
ShortestPath class uses Djikstra’s single-source shortest path algorithm
to determine the next voxel each voxel should visit we wish to go from
the seed to the blockee voxels. Once the shortest path is determined,

we also add all voxels above each voxel in the shortest path (using a
method called ‘makeRemovable’) to make the path (which represents
the proposed key piece) removable in the upward direction. We store
this removable piece in an ArrayList of voxels called ‘removablePiece’.
To prevent the removable piece from being mobile in more than just
the upward direction, we use the ‘setAnchorVoxel’ method of the
‘ShortestPath’ class to set an anchor voxel. The anchor voxel is a voxel
in the remaining volume which is directly-connected and furthest-away
from the seed voxel along each direction initially blocked direction by

the seed. The idea is that each anchor voxel should prevent the key
piece from being removable in more than just the upward direction.
Please note that our current implementation of this part is incorrect;
although the newer versions of our program attempt to fix it. We use
the same strategy to determine an additional anchor voxel to block the
direction blocked by the blocking voxel. If such a voxel cannot be
determined among the set of voxels available along the normal
direction, we set the additional anchor voxel ‘anchorVoxel2’ to the

blocking voxel itself. Once the removable piece, as well as the set of
anchor voxels, have been determined for each one of our ten voxel
pairs, we use the PuzzlePiece class to store a new puzzle piece with the
associated parameters (such as the set of anchors as well as the blocking
and blockee voxels) in the Puzlock class. To select a piece among our
ten removable pieces, we use the ‘selectPiece’ method. This method
returns the removable piece with the smallest sum of voxel accessibility
values. The ‘selectPiece’ method is called in the main method to allow

for the selected piece to be passed as a parameter to the
‘expandKeyPiece’ method.

5.1.4 Expand the key piece

At this point, we wish to expand the selected piece such that it contains
the appropriate number of voxels. We use a method called ‘addVoxels’
to determine a set of candidate voxels to be added to the key piece. For
each voxel in the selected piece, an added candidate is a neighbouring
voxel not already in the key piece nor the set of candidates. The
‘addVoxels2’ method adds voxels to the selected piece on the basis of

probability. Firstly, it calculates the sum of accessibility values of each
voxel as well as the neighbours above it using the ‘sumOfAccessVals’
method. This sum is raised to the power of negative ‘beta’ (where ‘beta’
has been set to three as per Song et al’s [10] recommendation of setting
it to an integer between one and six) and stored in a variable called ‘pi’.
The result of each iteration is added to a cumulative total called
‘sumOfPis’. The set of each voxel and the voxels above it are stores in
an ArrayList of voxels called ‘setOfUpNeighbours’. Then, we iterate

through the ‘setOfUpNeighbours’ to determine set a probability value
for selected a voxel among the candidate set of voxels. The probability
of each candidate is calculated by taking ‘pi’ and dividing it by the
‘sumOfPis’. Finally, we add a voxel to the selected piece by generating
a random integer in the between zero and ‘sumOfPis’ and add the
candidate at the index of the random integer value to the selected piece
iteratively until we have either have a selected piece with m voxels or
reach our iteration limit of fifty.

5.1.5 Confirm the key piece

We confirm the key piece by determining a remaining volume (all
voxels in the input mesh which are not in the key piece) and ensuring
that all voxels contained in the remaining volume are reachable from
source voxel using a flood fill algorithm. The ‘floodFill’ method stores
the set of voxels which have not been visited in an ArrayList of voxels
called ‘unvisitedVoxels’. It uses ‘get<Direction>’ to visit neighbouring
voxels iteratively until no unvisited voxels remain. It there are no
unvisited voxels, we can confirm the key piece as this means that the

remaining volume is not fragmented. At this point, we also print the
remaining volume to a file called ‘setOfNeighbours’ for the purpose of
visualization. The key piece is then stored in a 3D array called
‘outputVoxelizedMesh’ and printed out to a file called ‘keyPiece’ for
the purpose of visual debugging. Visualization aids the debugging
process and is accomplished on the renderer due to functionality added
by Dominic Ngoetjana. The output files can be used by Dominic in the
subsequent stages of the processes accomplished by our system. This

concludes the process of generating a key piece from an input mesh
represented as a 3D array.

5.2 Extraction of Secondary Pieces

The extraction of secondary pieces can be seen as a separate process
entirely. Ideally, we wish to use the valid key piece and remaining
volume, generated from the first part as input this part of the program.

However, since we could not confirm a valid key piece in the previous
section, we hard-coded a valid key piece aa well as the remaining
volume. The implementation of this section is contained in the class
called ‘Puzlock2’. Each one the five steps below are called from the
main method.

5.2.1 Select candidate seed voxels

The first step in determining the set of the candidate seed voxels is
determining the set of directions in which the key piece is removable.

To do so, we use a method called ‘checkRemovableDirections’. The
checkRemovableDirections method works by going through each
voxel in the key piece iteratively and using ‘get<Direction>’ to check
whether there the voxel to the direction we are checking (left, right, up,
down, forward and backward) is either null or already contained in the
key piece. If this is the case for all voxels, we add the direction we
checking to the list of removable directions via storing the direction is
an ArrayList of strings called ‘movingDirections’. If the key piece is
removable in only one direction (meaning there is only one string in

‘movingDirections’), it can be confirmed to be valid. This direction is
stored in a variable called ‘keyRemovableDirection’. The set of
candidate seed voxels are voxels which neighbour the key piece in a
direction perpendicular to the ‘keyRemovableDirection’. We use the
‘candididateSeedVoxels’ method to store the candidate seeds which
meet these criteria in an ArrayList called ‘setOfNeighbours’. For each
voxel in the key piece, we check if there is no key piece set in each
direction perpendicular to the ‘keyRemovableDirection’. If this is true,

we set its removable direction to the direction opposite the direction we
are checking and add the neighbouring voxel to the ‘setOfNeighbours’.
Each voxel’s removable direction is stored in a variable called
‘removableDirection’.

To reduce the set of ten neighbours to ten candidate seed voxels, we
use a method called ‘shortlistCandidates’. Within this method, we
compute the accessibility value of all voxels in the remaining volume
and store the accessibility value of all ten corresponding candidate seed
voxels in an ArrayList of doubles called ‘accVals’. We then sort
‘accVals’ from smallest to largest. We then iterate through each
shortlisted seed voxel and count the number of voxels from the current
voxel to last voxel along its ‘removableDirection’. The count of voxels
along each voxel’s ‘removableDirection’ is stored in a voxel attribute

called ‘remainingVolumeDistance’ and in an ArrayList of integers
called ‘distances’. We then sort ‘distances from smallest to largest. The
shortlist of ten candidates is determined by equally-weighted criteria
such than each shortlisted candidate must have the smallest
accessibility value as well as the shortest distance to the furthest-away
voxel along its ‘removableDirection’. We, therefore, rank each

candidate as follows: 1) we iterate through ‘distances’ and store the
index of ‘distances’ according to the current voxel’s
‘remainingVolumeDistance’ in yet another voxel attribute called
‘shortlistRank’. 2) We update ‘shortlistRank’ by iterating through the
indices of ‘accVals’ and adding the index of the corresponding voxel.

We store the ranking of each voxel as per its ‘shortlistRank’ in an
ArrayList of integers called ‘rankings’. We sort ‘rankings’ from
smallest to largest. Finally, we iterate through our set of ‘rankings’,
adding the voxels with a corresponding ‘shotlistRank’ to our shortlist
of ten candidate seed voxels.

5.2.2 Create an initial next piece

In creating the initial next piece, the goal is to pick the next piece with
the smallest sum of accessibility values among a set of candidates. For
each voxel in our shortlisted set of seed voxels, we traverse through

the voxels in the remaining volume along the current voxel’s
‘removableDirection’ and get the distance (‘cost’) of the path between
the seed and current neighbour. This is accomplished with a doubly-
nested for-loop. The ‘ShortestPath2’ class is used to calculate the
distance and stores it in a variable called ‘cost’. We iteratively set the
current ‘cost’ to the lowest cost if it is less than the lowest cost which
is initialized to an integer greater than the size of the input mesh. We
also store the seed and neighbouring voxel associated with the lowest

cost. We then determine the path between the stored seed voxel and
neighbouring voxel with yield the lowest possible cost. This path is
made removable along the stored seed voxel’s ‘removableDirection’
to generate an ArrayList of voxels which is appropriately named
‘removablePiece’. This piece represents our initial next piece. We print
this removable piece to a file for the purpose of visual debugging.

5.2.3 Ensure local interlocking

Using the ‘checkRemovableDirections’ method, we check to see if the
other five directions are blocked. The only difference is that in this case,

we pass the next piece as well as a combination of both the key piece and
the remaining volume as parameters. Since the next piece should not be
co-movable with the key piece, we also check to ensure that the next
piece is not removable in the removable direction of the key piece. If the
next piece is removable along an undesired direction, we use the
strategies described in subsection 5.1.3 to ensure blocking and mobility.

5.2.4 Expand and Confirm the next piece

The process of expanding each subsequent piece to the appropriate size

and confirming it is conducted in a process which is identical to the
process described in subsection 5.1.4. From the ‘Puzlock2’ class, we
use a ‘Puzlock’ object to make calls to the ‘expandKeyPiece’ and
‘confirmKeyPiece’ methods of the ‘Puzlock’ class.

5.3 Limitations

During the process of coding my implementation of the algorithm
contained in section 5 of Song et al [10], I discovered a set of limiting
factors. These limitations included the inability to manipulate a visual
representation, lack of time (or perhaps misused time spent on
implementing elements which were out of scope such as writing
pseudocode and C# code to visualize puzzle pieces in the Unity 3D
IDE), and the inability to handle different input types. Each one of
the limiting factors is further explained below. Although I could

visualize puzzle pieces using the renderer, I was unable to manipulate
the visualization of the output. This inability made it difficult to
determine the relative positioning of extracted puzzle pieces. My
project partner and I spent a few days implementing a C# method
consisting of a triply nested for loop to visualize a voxelized input
object represented in a 3D array of integers. I spent a week more than
expected creating unit tests for every method with a return type
contained in the Puzlock class. This unit testing proved valuable

though as it allowed me to debug minor errors and refactor my code.
From unit testing, I learned, for example, that it was best practice to
parse variable into methods as opposed to adjusting static variables
which may not have been initialized. Should time permit, I will

implement more unit testing to ensure my program produces what is
expected in every constituent method. Since I had initially started
coding the algorithm with a preset 3D array consisting only of 1s. My
program cannot handle inputs with 0s padded on any side of the 1s.
My program expects the starting position of the voxelized input

object (represented as 1s) to be at the top and left ends of the input
text file. Due to time constraints, I continued my implementation and
testing with the initial 4x4x4 3D integer array of 1s. Ambiguity
hindered my understanding of the paper. For certain issues, I had to
ask my supervisor for clarification on what a previously unexplained
symbol represented for example.

6. RESULTS

There are multiple ways in which the algorithm outlined and
documented in [10] can be implemented and optimized. From the
feedback of my demo presentation, I was confronted with the decision
to choose among a variety of programming languages. C++ is
commonly known as one of the fastest programming languages
currently. Although Python uses external libraries extensively, it is

arguably the simplest, which helps in terms of speed of development.
The Unity 3D IDE (integrated development environment) utilizes C#.
Coding in C# would help me visualize the output of my program during
the development phase. Ultimately I settled on coding the algorithm in
Java. Java's familiarity would assist me to write code quickly as
opposed to having to endure the process of learning a relatively
unfamiliar programming language. Despite the speed of development,
there exists the problem of the speed of the algorithm itself. Java is said

to be slower than C++ but its code can be made to run quicker by using
multithreading on multicore computer architectures. The idea was to
spend the last portion of my allocated time parallelizing the algorithm
using known procedures and consult on how to run the parallelized
algorithm on a high-performance computer using OpenMP. Figure 1
shows the necessity to speed up the process of generating recursively
interlocking puzzle pieces. When K (the number of puzzle pieces) is
150 and N (the number of voxels) is 30x29x23, Song et al. [10]’s
algorithm takes 534.43 minutes to run. The time complexity of this

algorithm was not provided.

Figure 4: A table adapted from Song et al. [10] showing how the time

taken to run their algorithm grows with an increase in the number of
puzzle pieces (K) and voxels.

6.2 Accuracy

A ‘PuzlockJUnitTests’ class is contained within the ‘test’ folder. This
class contains twelve unit tests for the seventeen unique methods with
return types contained in the ‘Puzlock’ class. JUnit testing is the basis
for determining the accuracy of our implementation relative to what is

expected from Song et al [10]. Unit testing allows us to check for any
discrepancies between what a program produces and what it is expected
to produce. Out of our twelve unit tests, eleven passed and only one
failed. The variable used as input and output to the program were hard-

coded in each case. These variables serve the purpose of allowing out
to understand what to expect as output when our program is given
certain variables as input. If a unit test fails, it is most likely due to an
error in our implementation of the algorithm or an error in
understanding how the algorithm works. Ideally, a finished program

would contain a unit test for every single method which returns an
object. However, since time did not permit, we could not develop
comprehensive and successful unit tests for each one of our five classes
which require them.

Through a combination of unit testing and acquiring an improved
understanding of how Song et al [10] works over time, we have
established the reasons as to why the Puzlock class fails to derive a
valid key piece successfully. The problems affecting the accuracy of
our program are as follows: 1) in subsection 5.1.3, when attempting to
ensure the blocking and mobility of a key piece, we are yet to adjust
the code such that the removable piece is determined before the anchor
voxels are set. The anchor voxels are part of the key piece although

they should not be. We are also yet to implement the functionality to
ensure that excessive voxels are not added to the removable piece. 2)
In subsection 5.1.3, our program only checks for blockage along the
seed voxel’s removable direction. We are yet to recognize that there
should be a set of anchor voxels, one for each removable direction. The
set of removable directions can be established using the
‘checkRemovableDirections’ method of the ‘Puzlock2’ class, however,
complications arose when attempting to utilize this functionality. The
program began to behave unexpectedly, requiring further debugging.

3) When expanding the key piece, we are yet to add a for-loop which
allows us to repeat the steps contained in subsection 5.1.4 to make the
key piece the appropriate size. 4) Due to a previous misunderstanding,
the general sequence of events contained in our implementation of
subsections 5.1.3 and 5.1.4 is incorrect. The ‘Puzzle Piece’ class should
not contain an ‘anchorVoxel2’ variable should not be initialized at this
point. 5) Subsection 5.2.3 and 5.2.4 of this paper are yet to be realized.
Although they predominantly consist of utilizing functionality already

contained in the program, we failed to implement these methods on
time. The five points above tremendously affect the accuracy of our
implementation as a whole. However, corrections are not expected to
change the time complexity of our program. It helps that we realize the
shortcomings of our implementation. We could make the program
increasingly accurate over time. Below, is a screenshot of a key piece
generated by our program given a 4x4x4 3D array as input. Our
program normally generates a different key piece with each run as

expected.

Figure 5: A visualization of a key piece generated by our
implementation on the renderer supplied. This key piece was generated

from a 3D array of 1s and 0s, later represented in a file format
recognized by the renderer.

6.3 Speed

The most expensive series of computations contained in our program
is a quadruply nested for-loop. This for-loop is used in the
‘subsequentPasses’ method of the Puzlock class when calculating the
accessibility value of every voxel in the input 3D array. This means that

our program has a time complexity of O(𝑛4). Unfortunately, the Song
et al. [10] paper contains no mention of time complexity in their results.

The only metric left for us to use as a basis for comparison is time taken
to generate puzzles. The table below shows the execution times (in
minutes) of the Puzlock and Puzlock2 classes relative to identical cubes
of varying sizes contained in Song et al. [10]:

Cube

Dimensions

Song et al.

[10]

Puzlock Puzlock2

5x5x5

(K=10)

0.7 minutes 0.0167
minutes

0.033
minutes

15x15x15

(K=100)

3.03
minutes

StackOver
flowError
at
‘breadthFi
rstTravers

al’ method

n/a

25x25x25

(K=500)

110.7
minutes

StackOver
flowError
at
‘breadthFi
rstTravers
al’ method

n/a

Table 1: A table showing the execution times (in minutes) of Song et al
[10]’s implementation, our implementation, and the difference between
them where K is the number of puzzle pieces in the puzzle.

It is important to more than the speed of execution is likely to have been
affected by Moore’s Law. There is no mention of the computer used to
run the Song et al. [10] algorithm. The computer used to run our

implementation is an Acer Travelmate laptop with an Intel Core 2 Duo
processor and four gigabytes of RAM. Faster computers are expected
run our implementation is less time. To accurately compare the speed
of two or more programs, one should run them on the same computer
at least five times and get the average of their execution times. Due to
implementation being incomplete and us not having access to metrics
for a fair comparison, any comparison of speed is not useful. We cannot
conclude on whether we have accomplished any speedup over the

original algorithm.

7. CONCLUSIONS

Interlocking puzzles are a largely unexplored topic with many possible
applications. This paper describes the coding process undertaken to

derive 3D interlocking puzzles using 3D arrays as the primary data
structure. It helps bridge the gap between a high-level and lower-level
algorithm which is easier to understand from a programming
perspective. The Song et al. [10] technique of generating recursively
interlocking puzzles is fairly complex and requires a lot of explanation.
One cannot understand it by simply reading their paper once or twice.
Although we failed to generate a set of valid key and secondary puzzle
pieces, we are well aware of the errors we made in understanding and
implementing their technique. Lack of time was the main drawback.

The primary objective of 3D printing valid puzzle pieces can still be
accomplished by hard-coding puzzle pieces in 3D arrays. The IO class
would assist us in using these 3D arrays to generate files which are
served as input to the renderer for post-processing. Going forward, we
hope to improve the accuracy of the implementation described in
section 5 of this paper. Once this implementation yields valid sets of
key and secondary puzzle pieces, one may focus on the efficiency
aspect. The efficiency aspect requires that one should accomplish

speedup over the original algorithm. We hope this paper inspires more
insight into the topic of recursively interlocking 3D puzzles. May we
continue to “do the other things, not because they are easy, but because
they are hard”. May we continue to recursively unlock a future of
possibilities.

8. ACKNOWLEDGEMENTS

Many thanks to my supervisor, Professor James Gain, who suggested

this interesting yet challenging honours topic along with its many
perks. His guidance and support cannot be understated. Thanks to my
project partner, Dominic Ngoetjana, for reaching out to me and
motivating the selection of this project. Even during tough times, we
managed to stay positive and maintain a productive working
relationship. Thanks to Sea Monster for allowing us to complete a two-
week internship at their offices. This two-week period was
undoubtedly our most productive. Thanks to Peng Song, Chi-Wing Fu

and Daniel Cohen-Or for writing the research paper this paper is based
on. Thanks to every other researcher who has worked on developing
our understanding of 3D interlocking puzzles.

9. REFERENCES

[1] COFFIN, S. T. 1990. The Puzzling World of Polyhedral
Dissections. Oxford University Press.

[2] CUTLER, B. 2007. A Computer Analysis of All 6-Piece
Burrs. Available online:
http://billcutlerpuzzles.com/docs/CA6PB/index.html. [Accessed 23
April 2019]

[3] IBM RESEARCH, 1997. The burr puzzles site. Available
online: http://www.research.ibm.com/BurrPuzzles/. [Accessed 23
April 2019]

[4] KILIAN, M., FLÖERY, S., CHEN, Z., MITRA, N. J.,

SHEFFER, A., AND POTTMANN, H. 2008. Curved folding. ACM
Tran. on Graphics (SIGGRAPH) 27, 3.

[5] LAU, M., OHGAWARA, A., MITANI, J., AND
IGARASHI, T. 2011. Converting 3d furniture models to fabricatable
parts and connectors. ACM Tran. on Graphics (SIGGRAPH) 30, 4.
Article 85.

[6] LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D Polyomino
puzzle. ACM Tran. on Graphics (SIGGRAPH Asia) 28, 5. Article 157.

[7] RÖVER, A. 2011. Burr tools. Available online:
http://burrtools.sourceforge.net/. [Accessed 23 April 2019]

[8] SKOURAS, M., COROS, S., GRINSPUN, E., AND
THOMASZEWSKI, B. 2015. Interactive surface design with
interlocking elements. ACM Transactions on Graphics, vol. 34, issue
6, Article 224.

[9] SLOCUM, J. 2001. Mechanical puzzles their history and
their challenge. In Katonah Museum of Art. The art of the puzzle:
astounding and confounding.

[10] SONG. P., FU. C., AND COHEN-OR. D. 2012. Recursive
Interlocking Puzzles. ACM Transactions on Graphics, Vol. 31, No. 6,

Article 128.

[11] SONG, P., FU, Z., LIU, L., AND FU, C. 2015. Printing 3D

objects with interlocking parts. Computer Aided Geometric Design,
Vol. 35 Issue C, 137-148.

[12] WANG, Z., SONG, P., AND PAULY, M. 2018. DESIA: a
general framework for designing interlocking assemblies. ACM
Transactions on Graphics, Vol. 37 Issue 6, No. 191.

[13] WYATT, E. 1981. Puzzles in Wood. Woodcraft Supply
Corp.

[14] XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y.,
AND COHEN-OR, D. 2011. Making burr puzzles from 3D models.
ACM Tran. on Graphics (SIGGRAPH) 30, 4. Article 97.

[15] ZHANG, Y., AND BALKCOM, D. 2016. Interlocking
structure assembly with voxels. 2173-2180.
10.1109/IROS.2016.7759341.

